

BRYOPHYTA
HEPATICAE
SESQUITERPENES AND OTHER COMPONENTS OF
MYLIA TAYLORII*

V. BENEŠOVÁ, HOANG MINH CHÂU and V. HEROUT

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences,
 Prague, Czechoslovakia

(Received 21 April 1972. Accepted 10 May 1972)

Key Word Index—*Mylia taylorii*; Hepaticae; liverworts; sesquiterpenes; myliol; *n*-alkanes; cerides.

In a systematic study of the components of liverworts, we have isolated during the past few years the following substances from various species: pinguisone,¹ 7-(3-methyl-2-butenyl)indole and 6-(3-methyl-2-butenyl)indole,² friedelin and lignoceric acid,³ saponarin and saponaretin,⁴ pellepiphillin⁵ and myliol.⁶ The last has been isolated from the liverwort *Mylia taylorii* (Hook) Gray, the other components of which are described in this communication.

RESULTS

Chemical analysis of the components was carried out with the *n*-pentane extract obtained from a collection of this plant from one locality (Adršpach).† The concentrated extract (33 g), from the dry, ground plant (1440 g) was chromatographed on silica gel⁷ deactivated with 10% water, affording 5 fractions (*a*–*e*) which were worked up separately.

* Part VIII in the series "Components of Liverworts". For Part VII see V. BENEŠOVÁ, M. STREIBL, H. M. CHÂU, I. BENEŠ and K. KONEČNÝ, *Coll. Czech. Chem. Commun.* in press.

† *n*-Pentane extracts of two samples of this liverwort, coming from different localities, were investigated. The first was collected in the marshland near the source of the river Úpa in the Giant Mountains (1400 m above sea level), while the second originated from a locality in the Adršpach area (500 m above sea level). Comparison of the two by silica gel TLC showed that ratios of components and groups of substances in the extracts from both samples were practically identical.

¹ V. BENEŠOVÁ, Z. SAMEK, V. HEROUT and F. ŠORM, *Coll. Czech. Chem. Commun.* **34**, 582 (1969).

² V. BENEŠOVÁ, Z. SAMEK, V. HEROUT and F. ŠORM, *Coll. Czech. Chem. Commun.* **34**, 1807 (1969).

³ V. BENEŠOVÁ, V. HEROUT and F. ŠORM, *Coll. Czech. Chem. Commun.* **34**, 1810 (1969).

⁴ N. A. TJUKAVKINA, V. BENEŠOVÁ and V. HEROUT, *Coll. Czech. Chem. Commun.* **35**, 1306 (1970).

⁵ V. BENEŠOVÁ and V. HEROUT, *Coll. Czech. Chem. Commun.* **35**, 1926 (1970).

⁶ V. BENEŠOVÁ, P. SEDMERA, V. HEROUT and F. ŠORM, *Tetrahedron Letters* **28**, 2697 (1971); *ibid. Coll. Czech. Chem. Commun.* in press.

⁷ J. PITRA and J. ŠTĚRBA, *Chem. Listy* **56**, 544 (1962).

Fraction a. This was a mixture of hydrocarbons (2.5 g) and was separated on a column of silica gel impregnated with silver nitrate⁸ to give a saturated (0.2 g) and an olefinic (1.8 g) fraction. The paraffins were analysed by GLC.⁹ A branched C₁₅ hydrocarbon accounted for 70% of the mixture, while the rest was a homologous series of odd and even paraffins C₁₆–C₃₅. The mixture of the olefinic hydrocarbons was freed from coloured components by distillation, and by analytical GLC.¹⁰ Twenty-one components were detected. On the basis of their boiling points and retention ratios they were classified predominantly as sesquiterpene hydrocarbons. The mixture was separated by preparative GLC¹¹ into seven fractions (I–VII). A control chromatogram (TLC on silver nitrate impregnated silica gel) indicated that only fractions II, IV and VI were single compounds. The hydrocarbons in fractions IV and VI, however, were very labile and were lost during attempted isolation. Fraction II gave a pure sesquiterpene hydrocarbon (0.13 g), C₁₅H₂₄ (M⁺ 204). IR: 1363, 1376 cm⁻¹ (CH₃)₂CH– or CH₃CR; 1614, 1642, 3600 cm⁻¹ (C=C); NMR (CDCl₃): 0.8–1.05 mt, 2H; 1.08 s, 1.62 mt, 3H, CH₃=C=–; 5.30 mt, 1H, –CH=C–; 5.40, J = 3 Hz, 1H, –CH=C–.¹² The presence of two double bonds, evident from the NMR spectrum, was corroborated by catalytic hydrogenation which gave tetrahydro derivative C₁₅H₂₈ (M⁺ 208). Work on the determination of the structure of this bicyclic sesquiterpenic hydrocarbon is in progress.

Fraction b. The crystalline fraction (0.1 g), m.p. 70°, having an IR (6% CCl₄) spectrum typical of ester carbonyl (1737, 1176 cm⁻¹) was analysed by GLC.⁹ It was shown to contain a homologous series of cerides, from C₃₈ to C₅₂, the major component being the C₄₂ component.

Fraction c. A pure liquid component was isolated in a very low yield (0.02 g) which gave an IR spectrum (5% CCl₄) having typical absorptions corresponding to an aldehydic (1718, 2730 cm⁻¹) and a hydroxyl group (3530, 3620 cm⁻¹).

Fraction d. The fractions eluted with benzene gave, after concentration, a pure crystalline compound (3.9 g), C₁₅H₂₂O (M⁺ 218), which after crystallisation from n-pentane had m.p. 110–111° and was shown to be myliol.⁶ Myliol is very unstable in air at elevated temperatures, and changes rapidly to a liquid, viscous, orange product, soluble only in polar solvents.

Fraction e. This fraction gave a crystalline substance (0.20 g), m.p. 134°, undepressed on admixture of an authentic sample of sitosterol.

Acknowledgements—For the identification of our plant material our thanks are due to Dr. J. Váňa of the Department of Botany, Charles University, Prague. The IR spectra were measured by Mrs. V. Matoušková and interpreted by Dr. S. Vašíčková of our Institute. The NMR spectra were measured and interpreted by Dr. P. Sedmera and the MS by Dr. L. Dolejš of our Institute. We express our thanks to them, and also to Academician F. Šorm for his interest in this work. Technical assistance was provided by Miss K. Verešová.

⁸ A. S. GUPTA and SUKH DEV, *J. Chromatog.* **12**, 189 (1963).

⁹ V. BENEŠOVÁ, M. STREIBL, H. M. CHÁU, I. BENES and K. KONEČNÝ, *Coll. Czech. Chem. Commun.* in press.

¹⁰ Analytical gas chromatography was carried out on a Perkin-Elmer model F 11 chromatograph with FID and a capillary column of stainless steel, 0.25 mm i.d., length 50 m. The inner walls of the column were coated with Carbowax 20 M. Temperature of the column was 125°, carrier gas nitrogen.

¹¹ Preparative gas chromatography was carried out on a Fractovap P Carlo Erba, Milano, with FID. Column length 6m, 10 mm i.d., filled with 'Porovina' of 0.2–0.3 mm, impregnated with 4% of Carbowax 20 M. Basic temperature 160° was increased to 180° in the course of the procedure, at a 1.5°/min rate. Carrier gas nitrogen, rate of flow 666 ml/min.

¹² IR spectra were measured on a Zeiss UR 10 spectrophotometer; MS were measured on a MS 902 mass spectrometer; NMR spectra were recorded with a Varian HA-100 spectrometer.